Online Range Image-based Pole Extractor for Long-term LiDAR Localization in Urban Environments
Auteurs : Hao Dong, Xieyuanli Chen, Cyrill Stachniss
Résumé : Reliable and accurate localization is crucial for mobile autonomous systems. Pole-like objects, such as traffic signs, poles, lamps, etc., are ideal landmarks for localization in urban environments due to their local distinctiveness and long-term stability. In this paper, we present a novel, accurate, and fast pole extraction approach that runs online and has little computational demands such that this information can be used for a localization system. Our method performs all computations directly on range images generated from 3D LiDAR scans, which avoids processing 3D point cloud explicitly and enables fast pole extraction for each scan. We test the proposed pole extraction and localization approach on different datasets with different LiDAR scanners, weather conditions, routes, and seasonal changes. The experimental results show that our approach outperforms other state-of-the-art approaches, while running online without a GPU. Besides, we release our pole dataset to the public for evaluating the performance of pole extractor, as well as the implementation of our approach.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.