Big Data driven Product Design: A Survey
Auteurs : Huafeng Quan, Shaobo Li, Changchang Zeng, Hongjing Wei, Jianjun Hu
Résumé : With the improvement of living standards, user requirements of modern products are becoming increasingly more diversified and personalized. Traditional product design methods can no longer satisfy the market needs due to their strong subjectivity, small survey scope, poor real-time data, and lack of visual display, which calls for the development of big data driven product design methodology. Big data in the product lifecycle contains valuable information for guiding product design, such as customer preferences, market demands, product evaluation, and visual display: online product reviews reflect customer evaluations and requirements; product images contain information of shape,color, and texture which can inspire designers to get initial design schemes more quickly or even directly generate new product images. How to efficiently collect product design related data and exploit them effectively during the whole product design process is thus critical to modern product design. This paper aims to conduct a comprehensive survey on big data driven product design. It will help researchers and practitioners to comprehend the latest development of relevant studies and applications centered on how big data can be processed, analyzed, and exploited in aiding product design. We first introduce several representative traditional product design methods and highlight their limitations. Then we discuss current and potential applications of textual data, image data, audio data, and video data in product design cycles. Finally, major deficiencies of existing data driven product design studies and future research directions are summarized. We believe that this study can draw increasing attention to modern data driven product design.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.