Enhancing Computational Fluid Dynamics with Machine Learning
Auteurs : Ricardo Vinuesa, Steven L. Brunton
Résumé : Machine learning is rapidly becoming a core technology for scientific computing, with numerous opportunities to advance the field of computational fluid dynamics. In this Perspective, we highlight some of the areas of highest potential impact, including to accelerate direct numerical simulations, to improve turbulence closure modeling, and to develop enhanced reduced-order models. We also discuss emerging areas of machine learning that are promising for computational fluid dynamics, as well as some potential limitations that should be taken into account.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.