The Early-type Stars from LAMOST survey: Atmospheric parameters
Auteurs : YanJun Guo, Bo Zhang, Chao Liu, Jiao Li, JiangDan Li, LuQian Wang, ZhiCun Liu, YongHui Hou, ZhanWen Han, XueFei Chen
Résumé : Massive stars play key roles in many astrophysical processes. Deriving atmospheric parameters of massive stars is important to understand their physical properties and thus are key inputs to trace their evolution. Here we report our work on adopting the data-driven technique Stellar LAbel Machine ({\tt SLAM}) with the non-LTE TLUSTY synthetic spectra as the training dataset to estimate the stellar parameters of LAMOST optical spectra for early-type stars. We apply two consistency tests to verify this machine learning method and compare stellar labels given by {\tt SLAM} with that in literature for several objects having high-resolution spectra. We provide the stellar labels of effective temperature ($T_\mathrm{eff}$), surface gravity ($\log{g}$), metallicity ([M/H]), and projected rotational velocity ($v\sin{i}$) for 3,931 and 578 early-type stars from LAMOST Low-Resolution Survey (LAMOST-LRS) and Medium-Resolution Survey (LAMOST-MRS), respectively. To estimate the average statistical uncertainties of our results, we calculated the standard deviation between the predicted stellar label and the pre-labeled published values from the high-resolution spectra. The uncertainties of the four parameters are $\sigma(T_\mathrm{eff}) = 2,185 $K, $\sigma(\log{g}) = 0.29$ dex, and $\sigma(v\sin{i}) = 11\, \rm km\,s^{-1}$ for MRS, and $\sigma(T_\mathrm{eff}) = 1,642 $K, $\sigma(\log{g}) = 0.25$ dex, and $\sigma(v\sin{i}) = 42\, \rm km\,s^{-1}$ for LRS spectra, respectively. We notice that parameters of $T_\mathrm{eff}$, $\log{g}$ and [M/H] can be better constrained using LRS spectra rather than using MRS spectra, most likely due to their broad wavelength coverage, while $v\sin{i}$ is constrained better by MRS spectra than by LRS spectra, probably due to the relatively accurate line profiles of MRS spectra.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.