Exploring Explainable AI in the Financial Sector: Perspectives of Banks and Supervisory Authorities
Auteurs : Ouren Kuiper, Martin van den Berg, Joost van der Burgt, Stefan Leijnen
Résumé : Explainable artificial intelligence (xAI) is seen as a solution to making AI systems less of a black box. It is essential to ensure transparency, fairness, and accountability, which are especially paramount in the financial sector. The aim of this study was a preliminary investigation of the perspectives of supervisory authorities and regulated entities regarding the application of xAI in the fi-nancial sector. Three use cases (consumer credit, credit risk, and anti-money laundering) were examined using semi-structured interviews at three banks and two supervisory authorities in the Netherlands. We found that for the investigated use cases a disparity exists between supervisory authorities and banks regarding the desired scope of explainability of AI systems. We argue that the financial sector could benefit from clear differentiation between technical AI (model) ex-plainability requirements and explainability requirements of the broader AI system in relation to applicable laws and regulations.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.