On planet formation around supermassive black holes and the grain disruption barriers by radiative torques
Auteurs : Nguyen Chau Giang, Thiem Hoang, Le Ngoc Tram, Nguyen Duc Dieu, Pham Ngoc Diep, Nguyen Thi Phuong, Bui Van Tuan, Truong Le Gia Bao
Résumé : It has recently been suggested that planets can form by dust coagulation in the torus of active galactic nuclei (AGN) with low luminosity of $L_{\rm bol} \leq 10^{42} \rm erg \rm s^{-1}$, constituting a new class of exoplanets orbiting the supermassive black hole called blanets. However, large dust grains in the AGN torus may be rotationally disrupted by RAdiative Torques (RATs) via the Radiative Torque Disruption (RATD) mechanism due to AGN radiation feedback, which would prevent the blanet formation. To test this scenario, we study the rotational disruption of composite dust grains and the desorption of icy grain mantles in the midplane of the AGN torus. We found that grain growth and then blanet formation are possible if dust and gas have a smooth distribution in the AGN torus. However, if the gas and dust grains are concentrated into dense clumps, grain growth will be strongly constrained by RATD, assuming the gas density distribution as adopted in Wada et al. Icy grain mantles are also quickly detached from the grain core by rotational desorption, reducing the sticking coefficient between icy grains and coagulation efficiency. We find that the grain rotational disruption and ice desorption can occur on timescales much shorter than the growth time up to a factor of $10^{4}$, which are the new barriers that grain growth must overcome to form blanets. The formation of large grains and blanets can occur if the clumps are very dense with density of $n_{\rm H} > 5\times10^{5} \rm cm^{-3}$.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.