Neural Network Quantization for Efficient Inference: A Survey
Auteurs : Olivia Weng
Résumé : As neural networks have become more powerful, there has been a rising desire to deploy them in the real world; however, the power and accuracy of neural networks is largely due to their depth and complexity, making them difficult to deploy, especially in resource-constrained devices. Neural network quantization has recently arisen to meet this demand of reducing the size and complexity of neural networks by reducing the precision of a network. With smaller and simpler networks, it becomes possible to run neural networks within the constraints of their target hardware. This paper surveys the many neural network quantization techniques that have been developed in the last decade. Based on this survey and comparison of neural network quantization techniques, we propose future directions of research in the area.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.