Collaborating with communities: Citizen Science Flood Monitoring in Urban Informal Settlements
Auteurs : Erich Wolff, Matthew French, Noor Ilhamsyah, Mere Jane Sawailau, Diego Ramirez-Lovering
Résumé : Concerns regarding the impacts of climate change on marginalised communities in the Global South have led to calls for affected communities to be more active as agents in the process of planning for climate change. While the value of involving communities in risk management is increasingly accepted, the development of appropriate tools to support community engagement in flood risk management projects remains nascent. Using the Revitalising Informal Settlements and their Environment (RISE) Program as a case study, the article interrogates the potential of citizen science to include disadvantaged urban communities in project-level flood risk reduction planning processes. This project collected more than 5000 photos taken by 26 community members living in 13 informal settlements in Fiji and Indonesia between 2018 and 2020. The case study documents the method used as well as the results achieved within this 2-year project. It discusses the method developed and implemented, outlines the main results, and provides lessons learned for others embarking on citizen science environmental monitoring projects. The case study indicates that the engagement model and the technology used were key to the success of the flood-monitoring project. The experiences with the practice of monitoring floods in collaboration with communities in Fiji and Indonesia provide insights into how similar projects could advance more participatory risk management practices. The article identifies how this kind of approach can collect valuable flood data while also promoting opportunities for local communities to be heard in the arena of risk reduction and climate change adaptation.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.