Understanding and Measuring Robustness of Multimodal Learning

Auteurs : Nishant Vishwamitra, Hongxin Hu, Ziming Zhao, Long Cheng, Feng Luo

Licence : CC BY 4.0

Résumé : The modern digital world is increasingly becoming multimodal. Although multimodal learning has recently revolutionized the state-of-the-art performance in multimodal tasks, relatively little is known about the robustness of multimodal learning in an adversarial setting. In this paper, we introduce a comprehensive measurement of the adversarial robustness of multimodal learning by focusing on the fusion of input modalities in multimodal models, via a framework called MUROAN (MUltimodal RObustness ANalyzer). We first present a unified view of multimodal models in MUROAN and identify the fusion mechanism of multimodal models as a key vulnerability. We then introduce a new type of multimodal adversarial attacks called decoupling attack in MUROAN that aims to compromise multimodal models by decoupling their fused modalities. We leverage the decoupling attack of MUROAN to measure several state-of-the-art multimodal models and find that the multimodal fusion mechanism in all these models is vulnerable to decoupling attacks. We especially demonstrate that, in the worst case, the decoupling attack of MUROAN achieves an attack success rate of 100% by decoupling just 1.16% of the input space. Finally, we show that traditional adversarial training is insufficient to improve the robustness of multimodal models with respect to decoupling attacks. We hope our findings encourage researchers to pursue improving the robustness of multimodal learning.

Soumis à arXiv le 22 Déc. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.