Video Joint Modelling Based on Hierarchical Transformer for Co-summarization

Auteurs : Li Haopeng, Ke Qiuhong, Gong Mingming, Zhang Rui

Résumé : Video summarization aims to automatically generate a summary (storyboard or video skim) of a video, which can facilitate large-scale video retrieval and browsing. Most of the existing methods perform video summarization on individual videos, which neglects the correlations among similar videos. Such correlations, however, are also informative for video understanding and video summarization. To address this limitation, we propose Video Joint Modelling based on Hierarchical Transformer (VJMHT) for co-summarization, which takes into consideration the semantic dependencies across videos. Specifically, VJMHT consists of two layers of Transformer: the first layer extracts semantic representation from individual shots of similar videos, while the second layer performs shot-level video joint modelling to aggregate cross-video semantic information. By this means, complete cross-video high-level patterns are explicitly modelled and learned for the summarization of individual videos. Moreover, Transformer-based video representation reconstruction is introduced to maximize the high-level similarity between the summary and the original video. Extensive experiments are conducted to verify the effectiveness of the proposed modules and the superiority of VJMHT in terms of F-measure and rank-based evaluation.

Soumis à arXiv le 27 Déc. 2021

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.