Integrating AI Planning with Natural Language Processing: A Combination of Explicit and Tacit Knowledge
Auteurs : Kebing Jin, Hankz Hankui Zhuo
Résumé : Natural language processing (NLP) aims at investigating the interactions between agents and humans, processing and analyzing large amounts of natural language data. Large-scale language models play an important role in current natural language processing. However, the challenges of explainability and complexity come along with the developments of language models. One way is to introduce logical relations and rules into natural language processing models, such as making use of Automated Planning. Automated planning (AI planning) focuses on building symbolic domain models and synthesizing plans to transit initial states to goals based on domain models. Recently, there have been plenty of works related to these two fields, which have the abilities to generate explicit knowledge, e.g., preconditions and effects of action models, and learn from tacit knowledge, e.g., neural models, respectively. Integrating AI planning and natural language processing effectively improves the communication between human and intelligent agents. This paper outlines the commons and relations between AI planning and natural language processing, argues that each of them can effectively impact on the other one by five areas: (1) planning-based text understanding, (2) planning-based natural language processing, (3) planning-based explainability, (4) text-based human-robot interaction, and (5) applications. We also explore some potential future issues between AI planning and natural language processing. To the best of our knowledge, this survey is the first work that addresses the deep connections between AI planning and Natural language processing.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.