Speciesist bias in AI -- How AI applications perpetuate discrimination and unfair outcomes against animals
Auteurs : Thilo Hagendorff, Leonie Bossert, Tse Yip Fai, Peter Singer
Résumé : Massive efforts are made to reduce biases in both data and algorithms in order to render AI applications fair. These efforts are propelled by various high-profile cases where biased algorithmic decision-making caused harm to women, people of color, minorities, etc. However, the AI fairness field still succumbs to a blind spot, namely its insensitivity to discrimination against animals. This paper is the first to describe the 'speciesist bias' and investigate it in several different AI systems. Speciesist biases are learned and solidified by AI applications when they are trained on datasets in which speciesist patterns prevail. These patterns can be found in image recognition systems, large language models, and recommender systems. Therefore, AI technologies currently play a significant role in perpetuating and normalizing violence against animals. This can only be changed when AI fairness frameworks widen their scope and include mitigation measures for speciesist biases. This paper addresses the AI community in this regard and stresses the influence AI systems can have on either increasing or reducing the violence that is inflicted on animals, and especially on farmed animals.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.