Localizing Small Apples in Complex Apple Orchard Environments
Auteurs : Christian Wilms, Robert Johanson, Simone Frintrop
Résumé : The localization of fruits is an essential first step in automated agricultural pipelines for yield estimation or fruit picking. One example of this is the localization of apples in images of entire apple trees. Since the apples are very small objects in such scenarios, we tackle this problem by adapting the object proposal generation system AttentionMask that focuses on small objects. We adapt AttentionMask by either adding a new module for very small apples or integrating it into a tiling framework. Both approaches clearly outperform standard object proposal generation systems on the MinneApple dataset covering complex apple orchard environments. Our evaluation further analyses the improvement w.r.t. the apple sizes and shows the different characteristics of our two approaches.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.