Satellite Image and Machine Learning based Knowledge Extraction in the Poverty and Welfare Domain
Auteurs : Ola Hall, Mattias Ohlsson, Thortseinn Rögnvaldsson
Résumé : Recent advances in artificial intelligence and machine learning have created a step change in how to measure human development indicators, in particular asset based poverty. The combination of satellite imagery and machine learning has the capability to estimate poverty at a level similar to what is achieved with workhorse methods such as face-to-face interviews and household surveys. An increasingly important issue beyond static estimations is whether this technology can contribute to scientific discovery and consequently new knowledge in the poverty and welfare domain. A foundation for achieving scientific insights is domain knowledge, which in turn translates into explainability and scientific consistency. We review the literature focusing on three core elements relevant in this context: transparency, interpretability, and explainability and investigate how they relates to the poverty, machine learning and satellite imagery nexus. Our review of the field shows that the status of the three core elements of explainable machine learning (transparency, interpretability and domain knowledge) is varied and does not completely fulfill the requirements set up for scientific insights and discoveries. We argue that explainability is essential to support wider dissemination and acceptance of this research, and explainability means more than just interpretability.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.