Crosslinks increase the elastic modulus and fracture toughness of gelatin hydrogels
Auteurs : Anshul Shrivastava, Namrata Gundiah
Résumé : Hydrogels have the ability to undergo large deformations and yet fail like brittle materials. The development of biocompatible hydrogels with high strength and toughness is an ongoing challenge in many applications. We crosslinked bovine gelatin using glutaraldehyde (control) and methylglyoxal (MGO) and assessed changes in their fracture toughness. Swelling experiments show ~710% retention of water in MGO hydrogels as compared to ~450% in control specimens. We used FTIR to identify the presence of chemical groups that may be involved in the crosslinking of gelatin gels. Scanning electron micrographs of lyophilized MGO hydrogels show large pores with plate-like intact walls that help retain water as compared to control specimens. Monotonic compression tests demonstrate nonlinear stress-strain behaviors for both hydrogel groups. MGO samples had 96% higher moduli as compared to control hydrogels that had moduli of 4.77+-0.73 kPa (n=4). A first order Ogden model fit the stress-strain data well as compared to Mooney-Rivlin and neo-Hookean models. We used cavitation rheology to quantify the maximum pressure for bubble failure in the hydrogels using blunt needles with inner radii of 75, 150, 230, and 320 {\mu}m respectively. Pressures inside the bubbles increased linearly with time and dropped sharply following a critical value. Bubbles in MGO gels were small and penny-shaped as compared to large spherical bubbles in control samples. We used the critical pressures to quantify the fracture energies of the hydrogels. MGO treatment increased the fracture energy by 187% from 13.09 J/m2 for control gels. Finally, we discuss the challenges in using the Ogden and Mooney-Rivlin models to compute the failure energy for gelatin hydrogels.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.