Self-Consistency Improves Chain of Thought Reasoning in Language Models
Auteurs : Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Denny Zhou
Résumé : We explore a simple ensemble strategy, self-consistency, that significantly improves the reasoning accuracy of large language models. The idea is to sample a diverse set of outputs from a language model and return the most consistent answer in the set. Such ensembling method improves reasoning accuracy when combined with chain of thought prompting. For arithmetic and commonsense reasoning benchmarks we find that self-consistency yields significant accuracy improvements in a variety of datasets, such as GSM8K (+10%), SVAMP (+14%), MultiArith (+24%), CommonsenseQA (+5%) and ARC (easy +4%, challenge +5%).
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.