Word-of-Mouth on Action: Analysis of Operational Decisions When Customers are Resentful
Auteurs : Bahar Çavdar, Nesim Erkip
Résumé : Word-of-Mouth (WoM) communication, via online reviews, plays an important role in customers' purchasing decisions. As such, retailers must consider the impact of WoM to manage customer perceptions and future demand. In this paper, we consider an online shopping system with premium and regular customers. Building on the behavioral and operations management literature, we model customer preferences based on the perceived service quality indicated by WoM and integrate this into the retailer's operational problem to determine a shipment policy. First, we study the e-tailer's problem when she has no knowledge of WoM, and only reacts to the changes in demand. We analyze the long-term behavior of customer demand and show that potential market size and customer sensitivity are the key parameters determining this behavior. Then, we build a model to integrate knowledge of WoM into operational decision making and partially characterize the optimal solution. We show that (i) beating the competition in the market may not always benefit the company under strict operational constraints as it can result in undesired customer switching behavior, (ii) relaxations in operational constraints may hurt profitability due to the associated difficulties of managing perceptions, and (iii) seeking a stationary policy can lead to suboptimal solutions, therefore cyclic policies should also be considered when appropriate.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.