The Distressing Ads That Persist: Uncovering The Harms of Targeted Weight-Loss Ads Among Users with Histories of Disordered Eating
Auteurs : Liza Gak, Seyi Olojo, Niloufar Salehi
Résumé : Targeted advertising can harm vulnerable groups when it targets individuals' personal and psychological vulnerabilities. We focus on how targeted weight-loss advertisements harm people with histories of disordered eating. We identify three features of targeted advertising that cause harm: the persistence of personal data that can expose vulnerabilities, over-simplifying algorithmic relevancy models, and design patterns encouraging engagement that can facilitate unhealthy behavior. Through a series of semi-structured interviews with individuals with histories of unhealthy body stigma, dieting, and disordered eating, we found that targeted weight-loss ads reinforced low self-esteem and deepened pre-existing anxieties around food and exercise. At the same time, we observed that targeted individuals demonstrated agency and resistance against distressing ads. Drawing on scholarship in postcolonial environmental studies, we use the concept of slow violence to articulate how online targeted advertising inflicts harms that may not be immediately identifiable. CAUTION: This paper includes media that could be triggering, particularly to people with an eating disorder. Please use caution when reading, printing, or disseminating this paper.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.