A-DRIVE: Autonomous Deadlock Detection and Recovery at Road Intersections for Connected and Automated Vehicles
Auteurs : Shunsuke Aoki (Raj), Ragunathan (Raj), Rajkumar
Résumé : Connected and Automated Vehicles (CAVs) are highly expected to improve traffic throughput and safety at road intersections, single-track lanes, and construction zones. However, multiple CAVs can block each other and create a mutual deadlock around these road segments (i) when vehicle systems have a failure, such as a communication failure, control failure, or localization failure and/or (ii) when vehicles use a long shared road segment. In this paper, we present an Autonomous Deadlock Detection and Recovery Protocol at Intersections for Automated Vehicles named A-DRIVE that is a decentralized and time-sensitive technique to improve traffic throughput and shorten worst-case recovery time. To enable the deadlock recovery with automated vehicles and with human-driven vehicles, A-DRIVE includes two components: V2V communication-based A-DRIVE and Local perception-based A-DRIVE. V2V communication-based A-DRIVE is designed for homogeneous traffic environments in which all the vehicles are connected and automated. Local perception-based A-DRIVE is for mixed traffic, where CAVs, non-connected automated vehicles, and human-driven vehicles co-exist and cooperate with one another. Since these two components are not exclusive, CAVs inclusively and seamlessly use them in practice. Finally, our simulation results show that A-DRIVE improves traffic throughput compared to a baseline protocol.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.