Brain Tumor Detection and Classification Using a New Evolutionary Convolutional Neural Network

Auteurs : Amin Abdollahi Dehkordi, Mina Hashemi, Mehdi Neshat, Seyedali Mirjalili, Ali Safaa Sadiq

Résumé : A definitive diagnosis of a brain tumour is essential for enhancing treatment success and patient survival. However, it is difficult to manually evaluate multiple magnetic resonance imaging (MRI) images generated in a clinic. Therefore, more precise computer-based tumour detection methods are required. In recent years, many efforts have investigated classical machine learning methods to automate this process. Deep learning techniques have recently sparked interest as a means of diagnosing brain tumours more accurately and robustly. The goal of this study, therefore, is to employ brain MRI images to distinguish between healthy and unhealthy patients (including tumour tissues). As a result, an enhanced convolutional neural network is developed in this paper for accurate brain image classification. The enhanced convolutional neural network structure is composed of components for feature extraction and optimal classification. Nonlinear L\'evy Chaotic Moth Flame Optimizer (NLCMFO) optimizes hyperparameters for training convolutional neural network layers. Using the BRATS 2015 data set and brain image datasets from Harvard Medical School, the proposed model is assessed and compared with various optimization techniques. The optimized CNN model outperforms other models from the literature by providing 97.4% accuracy, 96.0% sensitivity, 98.6% specificity, 98.4% precision, and 96.6% F1-score, (the mean of the weighted harmonic value of CNN precision and recall).

Soumis à arXiv le 26 Avr. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.