The Relationship Between Insulin Resistance Neutrophil to Lymphocyte Ratio
Auteurs : Alicia Shin
Résumé : Aim: There is increasing interest in the role of chronic inflammation on pathogenesis of various disease, and one of its markers, high NLR is associated with various mortality and morbidity risk. Insulin resistance (IR) might be one potential associate factors, as suggested in preclinical studies. However, epidemiological studies are scarce which investigated the association between NLR, and insulin resistance (IR) and they included only diabetes mellitus patients, not the general population. This study aims to determine if there is a direct correlation between NLR and IR in the US general population. Methods: The sample consists of 3,307 from general population, provided by National Health and Nutrition Examination Survey (NHANES). Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) value was calculated to evaluate insulin resistance. We investigated the relationship between their NLR and HOMA-IR values by bivariate and multivariate linear regression analyses. As insulin use could results in inaccurate HOMA-IR estimation, we excluded them and ran the analyses in subgroup analyses. Results: There was a relationship shown when insulin users were included, having a beta coefficient value of 0.010 (95% confidence interval [CI] of 0.003-0.017). However, when insulin users were excluded, the beta value decreased to 0.004 (95% CI of -0.006-0.015). The statistical significance was not reached when age, sex, and body mass index were adjusted for in the multivariate analyses. Conclusion: There is no visible relationship between IR and NLR in the general population. IR might not explain the variation of NLR value in healthy people, and further studies are needed to reveal the associated factor of high NLR.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.