SynWMD: Syntax-aware Word Mover's Distance for Sentence Similarity Evaluation
Auteurs : Chengwei Wei, Bin Wang, C. -C. Jay Kuo
Résumé : Word Mover's Distance (WMD) computes the distance between words and models text similarity with the moving cost between words in two text sequences. Yet, it does not offer good performance in sentence similarity evaluation since it does not incorporate word importance and fails to take inherent contextual and structural information in a sentence into account. An improved WMD method using the syntactic parse tree, called Syntax-aware Word Mover's Distance (SynWMD), is proposed to address these two shortcomings in this work. First, a weighted graph is built upon the word co-occurrence statistics extracted from the syntactic parse trees of sentences. The importance of each word is inferred from graph connectivities. Second, the local syntactic parsing structure of words is considered in computing the distance between words. To demonstrate the effectiveness of the proposed SynWMD, we conduct experiments on 6 textual semantic similarity (STS) datasets and 4 sentence classification datasets. Experimental results show that SynWMD achieves state-of-the-art performance on STS tasks. It also outperforms other WMD-based methods on sentence classification tasks.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.