Multiscale entropy analysis of astronomical time series. Discovering subclusters of hybrid pulsators
Auteurs : Jeroen Audenaert, Andrew Tkachenko
Résumé : The multiscale entropy assesses the complexity of a signal across different timescales. It originates from the biomedical domain and was recently successfully used to characterize light curves as part of a supervised machine learning framework to classify stellar variability. We explore the behavior of the multiscale entropy in detail by studying its algorithmic properties in a stellar variability context and by linking it with traditional astronomical time series analysis methods. We subsequently use the multiscale entropy as the basis for an interpretable clustering framework that can distinguish hybrid pulsators with both p- and g-modes from stars with only p-mode pulsations, such as $\delta$ Sct stars, or from stars with only g-mode pulsations, such as $\gamma$ Dor stars. We find that the multiscale entropy is a powerful tool for capturing variability patterns in stellar light curves. The multiscale entropy provides insights into the pulsation structure of a star and reveals how short- and long-term variability interact with each other based on time-domain information only. We also show that the multiscale entropy is correlated to the frequency content of a stellar signal and in particular to the near-core rotation rates of g-mode pulsators. We find that our new clustering framework can successfully identify the hybrid pulsators with both p- and g-modes in sets of $\delta$ Sct and $\gamma$ Dor stars, respectively. The benefit of our clustering framework is that it is unsupervised. It therefore does not require previously labeled data and hence is not biased by previous knowledge.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.