Conditional generation of cloud fields
Auteurs : Naser G. A. Mahfouz, Yi Ming, Kaleb Smith
Résumé : Processes related to cloud physics constitute the largest remaining scientific uncertainty in climate models and projections. This uncertainty stems from the coarse nature of current climate models and relatedly the lack of understanding of detailed physics. We train a generative adversarial network to generate realistic cloud fields conditioned on meterological reanalysis data for both climate model outputs as well as satellite imagery. While our network is able to generate realistic cloud fields, especially their large-scale patterns, more work is needed to refine its accuracy to resolve finer textural details of cloud masses to improve its predictions.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.