Can gender categorization influence the perception of animated virtual humans?
Auteurs : V. Araujo, D. Schaffer, A. B. Costa, S. R. Musse
Résumé : Animations have become increasingly realistic with the evolution of Computer Graphics (CG). In particular, human models and behaviors were represented through animated virtual humans, sometimes with a high level of realism. In particular, gender is a characteristic that is related to human identification, so that virtual humans assigned to a specific gender have, in general, stereotyped representations through movements, clothes, hair and colors, in order to be understood by users as desired by designers. An important area of study is finding out whether participants' perceptions change depending on how a virtual human is visually presented. Findings in this area can help the industry to guide the modeling and animation of virtual humans to deliver the expected impact to the audience. In this paper, we reproduce, through CG, a perceptual study that aims to assess gender bias in relation to a simulated baby. In the original study, two groups of people watched the same video of a baby reacting to the same stimuli, but one group was told the baby was female and the other group was told the same baby was male, producing different perceptions. The results of our study with virtual babies were similar to the findings with real babies. First, it shows that people's emotional response change depending on the character gender attribute, in this case the only difference was the baby's name. Our research indicates that by just informing the name of a virtual human can be enough to create a gender perception that impact the participant emotional answer.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.