Anticoncentration in Ramsey graphs and a proof of the Erdős-McKay conjecture
Auteurs : Matthew Kwan, Ashwin Sah, Lisa Sauermann, Mehtaab Sawhney
Résumé : An $n$-vertex graph is called $C$-Ramsey if it has no clique or independent set of size $C\log_2 n$ (i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge-statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of a $C$-Ramsey graph. This brings together two ongoing lines of research: the study of "random-like" properties of Ramsey graphs and the study of small-ball probabilities for low-degree polynomials of independent random variables. The proof proceeds via an "additive structure" dichotomy on the degree sequence, and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics, and low-rank approximation. One of the consequences of our result is the resolution of an old conjecture of Erd\H{o}s and McKay, for which Erd\H{o}s offered one of his notorious monetary prizes.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.