Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for Stiff ODEs

Auteurs : Pouyan Nasiri, Roozbeh Dargazany

Original Research Paper, 16 pages and 12 figures
Licence : CC BY-NC-SA 4.0

Résumé : Physics-informed neural networks (PINNs) have recently received much attention due to their capabilities in solving both forward and inverse problems. For training a deep neural network associated with a PINN, one typically constructs a total loss function using a weighted sum of different loss terms and then tries to minimize that. This approach often becomes problematic for solving stiff equations since it cannot consider adaptive increments. Many studies reported the poor performance of the PINN and its challenges in simulating stiff chemical active issues with administering conditions of stiff ordinary differential conditions (ODEs). Studies show that stiffness is the primary cause of the failure of the PINN in simulating stiff kinetic systems. Here, we address this issue by proposing a reduced weak-form of the loss function, which led to a new PINN architecture, further named as Reduced-PINN, that utilizes a reduced-order integration method to enable the PINN to solve stiff chemical kinetics. The proposed Reduced-PINN can be applied to various reaction-diffusion systems involving stiff dynamics. To this end, we transform initial value problems (IVPs) to their equivalent integral forms and solve the resulting integral equations using physics-informed neural networks. In our derived integral-based optimization process, there is only one term without explicitly incorporating loss terms associated with ordinary differential equation (ODE) and initial conditions (ICs). To illustrate the capabilities of Reduced-PINN, we used it to simulate multiple stiff/mild second-order ODEs. We show that Reduced-PINN captures the solution accurately for a stiff scalar ODE. We also validated the Reduced-PINN against a stiff system of linear ODEs.

Soumis à arXiv le 23 Aoû. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.