Model-Free Sequential Testing for Conditional Independence via Testing by Betting
Auteurs : Shalev Shaer, Gal Maman, Yaniv Romano
Résumé : This paper develops a model-free sequential test for conditional independence. The proposed test allows researchers to analyze an incoming i.i.d. data stream with any arbitrary dependency structure, and safely conclude whether a feature is conditionally associated with the response under study. We allow the processing of data points online as soon as they arrive and stop data acquisition once significant results are detected while rigorously controlling the type-I error rate. Our test can work with any sophisticated machine learning algorithm to enhance data efficiency to the extent possible. The developed method is inspired by two statistical frameworks. The first is the model-X conditional randomization test, a test for conditional independence that is valid in offline settings where the sample size is fixed in advance. The second is testing by betting, a "game-theoretic" approach for sequential hypothesis testing. We conduct synthetic experiments to demonstrate the advantage of our test over out-of-the-box sequential tests that account for the multiplicity of tests in the time horizon, and demonstrate the practicality of our proposal by applying it to real-world tasks.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.