Earth as an Exoplanet. II. Earth's Time-variable Thermal Emission and Its Atmospheric Seasonality of Bioindicators
Auteurs : Jean-Noel Mettler, Sascha P. Quanz, Ravit Helled, Stephanie L. Olson, Edward W. Schwieterman
Résumé : We assess the dependence of Earth's disk-integrated mid-infrared thermal emission spectrum on observation geometries and investigate which and how spectral features are impacted by seasonality on Earth. We compiled an exclusive dataset containing 2690 disk-integrated thermal emission spectra for four different full-disk observing geometries (North & South Pole centered and Africa & Pacific centred equatorial views) over four consecutive years. The spectra were derived from 2378 spectral channels in the wavelength range from 3.75 to 15.4 micron (nominal resolution $\approx$ 1200) and were recorded by the Atmospheric Infrared Sounder aboard the Aqua satellite. We learned that there is significant seasonal variability in Earth's thermal emission spectrum, and the strength of spectral features of bio-indicators, such as N2O, CH4, O3 and CO2 depends strongly on both season and viewing geometry. In addition, we found a strong spectral degeneracy with respect to the latter two indicating that multi-epoch measurements and time-dependent signals may be required in order to fully characterize planetary environments. Even for Earth and especially for equatorial views, the variations in flux and strength of absorption features in the disk-integrated data are small and typically $\le$ 10%. Disentangling these variations from the noise in future exoplanet observations will be a challenge. However, irrespectively of when the planet will be measured (i.e., day or night or season) the results from mid-infrared observations will remain the same to the zeroth order which is an advantage over reflected light observations.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.