Nozzle Shocks, Disk Tearing and Streamers Drive Rapid Accretion in 3D GRMHD Simulations of Warped Thin Disks
Auteurs : Nicholas Kaaz, Matthew T. P. Liska, Jonatan Jacquemin-Ide, Zachary L. Andalman, Gibwa Musoke, Alexander Tchekhovskoy, Oliver Porth
Résumé : The angular momentum of gas feeding a black hole (BH) is typically misaligned with respect to the BH spin, resulting in a tilted accretion disk. Rotation of the BH drags the surrounding space-time, manifesting as Lense-Thirring torques that lead to disk precession and warping. We study these processes by simulating a thin ($H/r=0.02$), highly tilted ($\mathcal{T}=65^\circ$) accretion disk around a rapidly rotating ($a=0.9375$) BH at extremely high resolutions, which we performed using the general-relativistic magnetohydrodynamic (GRMHD) code H-AMR. The disk becomes significantly warped and continuously tears into two individually precessing sub-disks. We find that mass accretion rates far exceed the standard $\alpha$-viscosity expectations. We identify two novel dissipation mechanisms specific to warped disks that are the main drivers of accretion, distinct from the local turbulent stresses that are usually thought to drive accretion. In particular, we identify extreme scale height oscillations that occur twice an orbit throughout our disk. When the scale height compresses, `nozzle' shocks form, dissipating orbital energy and driving accretion. Separate from this phenomenon, there is also extreme dissipation at the location of the tear. This leads to the formation of low-angular momentum `streamers' that rain down onto the inner sub-disk, shocking it. The addition of low angular momentum gas to the inner sub-disk causes it to rapidly accrete, even when it is transiently aligned with the BH spin and thus unwarped. These mechanisms, if general, significantly modify the standard accretion paradigm. Additionally, they may drive structural changes on much shorter timescales than expected in $\alpha$-disks, potentially explaining some of the extreme variability observed in active galactic nuclei.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.