Sulphur monoxide emission tracing an embedded planet in the HD 100546 protoplanetary disk
Auteurs : Alice S. Booth, John D. Ilee, Catherine Walsh, Mihkel Kama, Luke Keyte, Ewine F. van Dishoeck, Hideko Nomura
Résumé : Molecular line observations are powerful tracers of the physical and chemical conditions across the different evolutionary stages of star, disk and planet formation. Using the high angular resolution and unprecedented sensitivity of the Atacama Large Millimeter Array (ALMA) there is now a drive to detect small-scale gas structures in protoplanetary disks that can be attributed directly to forming planets. We report high angular resolution ALMA Band 7 observations of sulphur monoxide (SO) in the nearby planet-hosting disk around Herbig star HD 100546. SO is rarely detected in evolved protoplanetary disks but in other environments, it is most often utilised as a tracer of shocks. The SO emission from the HD 100546 disk is primarily originating from gas within the approx. 20 au mm-dust cavity and shows a clear azimuthal brightness asymmetry of a factor of 2. In addition, we see a significant difference in the line profile shape when comparing these new Cycle 7 data to Cycle 0 data of the same SO transitions. We discuss the different physical/chemical mechanisms that could be responsible for this asymmetry and time variability including disk winds, disk warps, and a shock triggered by a (forming) planet. We propose that the SO is enhanced in the cavity due to the presence of a giant planet. The SO asymmetry complements evidence for hot circumplanetary material around the giant planet HD 100546 c traced via CO ro-vibrational emission. This work sets the stage for further observational and modelling efforts to detect and understand the chemical imprint of a forming planet on its parent disk.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.