Xtreme Margin: A Tunable Loss Function for Binary Classification Problems

Auteurs : Rayan Wali

10 pages
Licence : CC BY 4.0

Résumé : Loss functions drive the optimization of machine learning algorithms. The choice of a loss function can have a significant impact on the training of a model, and how the model learns the data. Binary classification is one of the major pillars of machine learning problems, used in medical imaging to failure detection applications. The most commonly used surrogate loss functions for binary classification include the binary cross-entropy and the hinge loss functions, which form the focus of our study. In this paper, we provide an overview of a novel loss function, the Xtreme Margin loss function. Unlike the binary cross-entropy and the hinge loss functions, this loss function provides researchers and practitioners flexibility with their training process, from maximizing precision and AUC score to maximizing conditional accuracy for a particular class, through tunable hyperparameters $\lambda_1$ and $\lambda_2$, i.e., changing their values will alter the training of a model.

Soumis à arXiv le 31 Oct. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.