Controllable Citation Sentence Generation with Language Models

Auteurs : Nianlong Gu, Richard H. R. Hahnloser

Résumé : Citation generation aims to generate a citation sentence that refers to a chosen paper in the context of a manuscript. However, a rigid citation generation process is at odds with an author's desire to control specific attributes, such as 1) the citation intent, e.g., either introducing background information or comparing results, and 2) keywords that should appear in the citation text. To provide these degrees of controllability during citation generation, we propose to integrate the manuscript context, the context of the referenced paper, and the desired control attributes into a structured template and use it to fine-tune a language model (LM) via next-token prediction. We then utilize Proximal Policy Optimization to directly optimize the LM in favor of a high score of our proposed controllability metric. The proposed workflow harmoniously combines citation attribute suggestion and conditional citation generation into one LM, allowing for better user control.

Soumis à arXiv le 14 Nov. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.