Aligning Learners' Expectations and Performance by Learning Analytics Systemwith a Predictive Model
Auteurs : Saša Brdnik, Boštjan Šumak, Vili Podgorelec
Résumé : Learning analytics (LA) is data collection, analysis, and representation of data about learners in order to improve their learning and performance. Furthermore, LA opens the door to opportunities for self-regulated learning in higher education, a circular process in which learners activate and sustain behaviours that are oriented toward their personal learning goals. The potentials of LA and self-regulated learning are huge; however, they are not yet widely applied in higher education institutions. Slovenian higher education institutions have lagged behind other European countries in LA adoption. Our research aims to fill this gap by using a qualitatively and quantitatively led workflow for building a requirement-oriented LA solution, consisting of empirically gathering the students' expectations of LA and presenting a dashboard solution. Translated Student Expectations of Learning Analytics Questionnaire and focus groups were used to gather expectations from learners. Based on them, a user interface utilizing LA and grade prediction with an AI model was implemented for a selected course. The interface includes early grade prediction, peer comparison, and historical data overview. Grade prediction is based on a machine learning model built on users' interaction in the virtual learning environment, demographic data and lab grades. First, classification is used to determine students at risk of failing - its precision reaches 98% after the first month of the course. Second, the exact grade is predicted with the Decision Tree Regressor, reaching a mean absolute error of 11.2grade points (on a 100 points scale) after the first month. The proposed system's main benefit is the support for self-regulation of the learning process during the semester, possibly motivating students to adjust their learning strategies to prevent failing the course. Initial student evaluation showed positive results.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.