A constant lower bound for the union-closed sets conjecture
Auteurs : Justin Gilmer
Résumé : We show that for any union-closed family $\mathcal{F} \subseteq 2^{[n]}, \mathcal{F} \neq \{\emptyset\}$, there exists an $i \in [n]$ which is contained in a $0.01$ fraction of the sets in $\mathcal{F}$. This is the first known constant lower bound, and improves upon the $\Omega(\log_2(|\mathcal{F}|)^{-1})$ bounds of Knill and W\'{o}jick. Our result follows from an information theoretic strengthening of the conjecture. Specifically, we show that if $A, B$ are independent samples from a distribution over subsets of $[n]$ such that $Pr[i \in A] < 0.01$ for all $i$ and $H(A) > 0$, then $H(A \cup B) > H(A)$.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.