New Generation Stellar Spectral Libraries in the Optical and Near-Infrared I: The Recalibrated UVES-POP Library for Stellar Population Synthesis
Auteurs : Sviatoslav Borisov, Igor Chilingarian, Evgenii Rubtsov, Cédric Ledoux, Claudio Melo, Kirill Grishin, Ivan Katkov, Vladimir Goradzhanov, Anton Afanasiev, Anastasia Kasparova, Anna Saburova
Résumé : We present re-processed flux calibrated spectra of 406 stars from the UVES-POP stellar library in the wavelength range 320-1025 nm, which can be used for stellar population synthesis. The spectra are provided in the two versions having spectral resolving power R=20,000 and R=80,000. Raw spectra from the ESO data archive were re-reduced using the latest version of the UVES data reduction pipeline with some additional algorithms that we developed. The most significant improvements in comparison with the original UVES-POP release are: (i) an updated Echelle order merging, which eliminates "ripples" present in the published spectra, (ii) a full telluric correction, (iii) merging of non-overlapping UVES spectral setups taking into account the global continuum shape, (iv) a spectrophotometric correction and absolute flux calibration, and (v) estimates of the interstellar extinction. For 364 stars from our sample, we computed atmospheric parameters $T_\mathrm{eff}$, surface gravity log $g$, metallicity [Fe/H], and $\alpha$-element enhancement [$\alpha$/Fe] by using a full spectrum fitting technique based on a grid of synthetic stellar atmospheres and a novel minimization algorithm. We also provide projected rotational velocity $v\sin i$ and radial velocity $v_{rad}$ estimates. The overall absolute flux uncertainty in the re-processed dataset is better than 2% with sub-% accuracy for about half of the stars. A comparison of the recalibrated UVES-POP spectra with other spectral libraries shows a very good agreement in flux; at the same time, $Gaia$ DR3 BP/RP spectra are often discrepant with our data, which we attribute to spectrophotometric calibration issues in $Gaia$ DR3.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.