Engineering Monosemanticity in Toy Models

Auteurs : Adam S. Jermyn, Nicholas Schiefer, Evan Hubinger

31 pages, 26 figures
Licence : CC BY 4.0

Résumé : In some neural networks, individual neurons correspond to natural ``features'' in the input. Such \emph{monosemantic} neurons are of great help in interpretability studies, as they can be cleanly understood. In this work we report preliminary attempts to engineer monosemanticity in toy models. We find that models can be made more monosemantic without increasing the loss by just changing which local minimum the training process finds. More monosemantic loss minima have moderate negative biases, and we are able to use this fact to engineer highly monosemantic models. We are able to mechanistically interpret these models, including the residual polysemantic neurons, and uncover a simple yet surprising algorithm. Finally, we find that providing models with more neurons per layer makes the models more monosemantic, albeit at increased computational cost. These findings point to a number of new questions and avenues for engineering monosemanticity, which we intend to study these in future work.

Soumis à arXiv le 16 Nov. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.