When Spectral Modeling Meets Convolutional Networks: A Method for Discovering Reionization-era Lensed Quasars in Multi-band Imaging Data
Auteurs : Irham Taufik Andika, Knud Jahnke, Arjen van der Wel, Eduardo Bañados, Sarah E. I. Bosman, Frederick B. Davies, Anna-Christina Eilers, Anton Timur Jaelani, Chiara Mazzucchelli, Masafusa Onoue, Jan-Torge Schindler
Résumé : Over the last two decades, around three hundred quasars have been discovered at $z\gtrsim6$, yet only one was identified as being strong-gravitationally lensed. We explore a new approach, enlarging the permitted spectral parameter space while introducing a new spatial geometry veto criterion, implemented via image-based deep learning. We made the first application of this approach in a systematic search for reionization-era lensed quasars, using data from the Dark Energy Survey, the Visible and Infrared Survey Telescope for Astronomy Hemisphere Survey, and the Wide-field Infrared Survey Explorer. Our search method consists of two main parts: (i) pre-selection of the candidates based on their spectral energy distributions (SEDs) using catalog-level photometry and (ii) relative probabilities calculation of being a lens or some contaminant utilizing a convolutional neural network (CNN) classification. The training datasets are constructed by painting deflected point-source lights over actual galaxy images to generate realistic galaxy-quasar lens models, optimized to find systems with small image separations, i.e., Einstein radii of $\theta_\mathrm{E} \leq 1$ arcsec. Visual inspection is then performed for sources with CNN scores of $P_\mathrm{lens} > 0.1$, which led us to obtain 36 newly-selected lens candidates, waiting for spectroscopic confirmation. These findings show that automated SED modeling and deep learning pipelines, supported by modest human input, are a promising route for detecting strong lenses from large catalogs that can overcome the veto limitations of primarily dropout-based SED selection approaches.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.