Diffusion Guided Domain Adaptation of Image Generators
Auteurs : Kunpeng Song, Ligong Han, Bingchen Liu, Dimitris Metaxas, Ahmed Elgammal
Résumé : Can a text-to-image diffusion model be used as a training objective for adapting a GAN generator to another domain? In this paper, we show that the classifier-free guidance can be leveraged as a critic and enable generators to distill knowledge from large-scale text-to-image diffusion models. Generators can be efficiently shifted into new domains indicated by text prompts without access to groundtruth samples from target domains. We demonstrate the effectiveness and controllability of our method through extensive experiments. Although not trained to minimize CLIP loss, our model achieves equally high CLIP scores and significantly lower FID than prior work on short prompts, and outperforms the baseline qualitatively and quantitatively on long and complicated prompts. To our best knowledge, the proposed method is the first attempt at incorporating large-scale pre-trained diffusion models and distillation sampling for text-driven image generator domain adaptation and gives a quality previously beyond possible. Moreover, we extend our work to 3D-aware style-based generators and DreamBooth guidance.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.