Contrastive Language-Vision AI Models Pretrained on Web-Scraped Multimodal Data Exhibit Sexual Objectification Bias

Auteurs : Robert Wolfe, Yiwei Yang, Bill Howe, Aylin Caliskan

ACM FAccT 2023
12 pages, 4 figures, 2 tables
Licence : CC BY-NC-SA 4.0

Résumé : Nine language-vision AI models trained on web scrapes with the Contrastive Language-Image Pretraining (CLIP) objective are evaluated for evidence of a bias studied by psychologists: the sexual objectification of girls and women, which occurs when a person's human characteristics, such as emotions, are disregarded and the person is treated as a body. We replicate three experiments in psychology quantifying sexual objectification and show that the phenomena persist in AI. A first experiment uses standardized images of women from the Sexual OBjectification and EMotion Database, and finds that human characteristics are disassociated from images of objectified women: the model's recognition of emotional state is mediated by whether the subject is fully or partially clothed. Embedding association tests (EATs) return significant effect sizes for both anger (d >0.80) and sadness (d >0.50), associating images of fully clothed subjects with emotions. GRAD-CAM saliency maps highlight that CLIP gets distracted from emotional expressions in objectified images. A second experiment measures the effect in a representative application: an automatic image captioner (Antarctic Captions) includes words denoting emotion less than 50% as often for images of partially clothed women than for images of fully clothed women. A third experiment finds that images of female professionals (scientists, doctors, executives) are likely to be associated with sexual descriptions relative to images of male professionals. A fourth experiment shows that a prompt of "a [age] year old girl" generates sexualized images (as determined by an NSFW classifier) up to 73% of the time for VQGAN-CLIP and Stable Diffusion; the corresponding rate for boys never surpasses 9%. The evidence indicates that language-vision AI models trained on web scrapes learn biases of sexual objectification, which propagate to downstream applications.

Soumis à arXiv le 21 Déc. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.