Quasilinear wave equations on asymptotically flat spacetimes with applications to Kerr black holes

Auteurs : Mihalis Dafermos, Gustav Holzegel, Igor Rodnianski, Martin Taylor

98 pages, 2 figures
Licence : CC BY 4.0

Résumé : We prove global existence and decay for small-data solutions to a class of quasilinear wave equations on a wide variety of asymptotically flat spacetime backgrounds, allowing in particular for the presence of horizons, ergoregions and trapped null geodesics, and including as a special case the Schwarzschild and very slowly rotating $\vert a \vert \ll M$ Kerr family of black holes in general relativity. There are two distinguishing aspects of our approach. The first aspect is its dyadically localised nature: The nontrivial part of the analysis is reduced entirely to time-translation invariant $r^p$-weighted estimates, in the spirit of [DR09], to be applied on dyadic time-slabs which for large $r$ are outgoing. Global existence and decay then both immediately follow by elementary iteration on consecutive such time-slabs, without further global bootstrap. The second, and more fundamental, aspect is our direct use of a "blackbox" linear inhomogeneous energy estimate on exactly stationary metrics, together with a novel but elementary physical space top order identity that need not capture the structure of trapping and is robust to perturbation. In the specific example of Kerr black holes, the required linear inhomogeneous estimate can then be quoted directly from the literature [DRSR16], while the additional top order physical space identity can be shown easily in many cases (we include in the Appendix a proof for the Kerr case $\vert a \vert \ll M$, which can in fact be understood in this context simply as a perturbation of Schwarzschild). In particular, the approach circumvents the need either for producing a purely physical space identity capturing trapping or for a careful analysis of the commutation properties of frequency projections with the wave operator of time-dependent metrics.

Soumis à arXiv le 28 Déc. 2022

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.