Personality Detection of Applicants And Employees Using K-mode Algorithm And Ocean Model
Auteurs : Binisha Mohan, Dinju Vattavayalil Joseph, Bharat Plavelil Subhash
Résumé : The combination of conduct, emotion, motivation, and thinking is referred to as personality. To shortlist candidates more effectively, many organizations rely on personality predictions. The firm can hire or pick the best candidate for the desired job description by grouping applicants based on the necessary personality preferences. A model is created to identify applicants' personality types so that employers may find qualified candidates by examining a person's facial expression, speech intonation, and resume. Additionally, the paper emphasises detecting the changes in employee behaviour. Employee attitudes and behaviour towards each set of questions are being examined and analysed. Here, the K-Modes clustering method is used to predict employee well-being, including job pressure, the working environment, and relationships with peers, utilizing the OCEAN Model and the CNN algorithm in the AVI-AI administrative system. Findings imply that AVIs can be used for efficient candidate screening with an AI decision agent. The study of the specific field is beyond the current explorations and needed to be expanded with deeper models and new configurations that can patch extremely complex operations.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.