HIT-SCIR at MMNLU-22: Consistency Regularization for Multilingual Spoken Language Understanding
Auteurs : Bo Zheng, Zhouyang Li, Fuxuan Wei, Qiguang Chen, Libo Qin, Wanxiang Che
Résumé : Multilingual spoken language understanding (SLU) consists of two sub-tasks, namely intent detection and slot filling. To improve the performance of these two sub-tasks, we propose to use consistency regularization based on a hybrid data augmentation strategy. The consistency regularization enforces the predicted distributions for an example and its semantically equivalent augmentation to be consistent. We conduct experiments on the MASSIVE dataset under both full-dataset and zero-shot settings. Experimental results demonstrate that our proposed method improves the performance on both intent detection and slot filling tasks. Our system\footnote{The code will be available at \url{https://github.com/bozheng-hit/MMNLU-22-HIT-SCIR}.} ranked 1st in the MMNLU-22 competition under the full-dataset setting.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.