Hierarchical Classification of Variable Stars Using Deep Convolutional Neural Networks
Auteurs : Mahdi Abdollahi, Nooshin Torabi, Sadegh Raeisi, Sohrab Rahvar
Résumé : The importance of using fast and automatic methods to classify variable stars for large amounts of data is undeniable. There have been many attempts to classify variable stars by traditional algorithms like Random Forest. In recent years, neural networks as classifiers have come to notice because of their lower computational cost compared to traditional algorithms. This paper uses the Hierarchical Classification technique, which contains two main steps of predicting class and then subclass of stars. All the models in both steps have same network structure and we test both Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). Our pre-processing method uses light curves and period of stars as input data. We consider most of the classes and subclasses of variable stars in OGLE-IV database and show that using Hierarchical Classification technique and designing appropriate preprocessing can increase accuracy of predicting smaller classes, ACep and T2Cep. We obtain an accuracy of 98% for class classification and 93% for subclasses classification.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.