JWST/MIRI Spectroscopy of the Disk of the Young Eruptive Star EX Lup in Quiescence
Auteurs : Ágnes Kóspál, Péter Ábrahám, Lindsey Diehl, Andrea Banzatti, Jeroen Bouwman, Lei Chen, Fernando Cruz-Sáenz de Miera, Joel D. Green, Thomas Henning, Christian Rab
Résumé : EX Lup is a low-mass pre-main sequence star that occasionally shows accretion-related outbursts. Here, we present JWST/MIRI medium resolution spectroscopy obtained for EX Lup fourteen years after its powerful outburst. EX Lup is now in quiescence and displays a Class II spectrum. We detect a forest of emission lines from molecules previously identified in infrared spectra of classical T Tauri disks: H2O, OH, H2, HCN, C2H2, and CO2. The detection of organic molecules demonstrates that they are back after disappearing during the large outburst. Spectral lines from water and OH are for the first time de-blended and will provide a much improved characterization of their distribution and density in the inner disk. The spectrum also shows broad emission bands from warm, sub-micron size amorphous silicate grains at 10 and 18 um. During the outburst, in 2008, crystalline forsterite grains were annealed in the inner disk within 1 au, but their spectral signatures in the 10 um silicate band later disappeared. With JWST we re-discovered these crystals via their 19.0, 20.0, and 23.5 um emission, whose strength implies that the particles are at ~3 au from the star. This suggests that crystalline grains formed in 2008 were transported outwards and now approach the water snowline, where they may be incorporated into planetesimals. Containing several key tracers of planetesimal and planet formation, EX Lup is an ideal laboratory to study the effects of variable luminosity on the planet-forming material and may provide explanation for the observed high crystalline fraction in solar system comets.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.