Towards Modular Machine Learning Solution Development: Benefits and Trade-offs
Auteurs : Samiyuru Menik, Lakshmish Ramaswamy
Résumé : Machine learning technologies have demonstrated immense capabilities in various domains. They play a key role in the success of modern businesses. However, adoption of machine learning technologies has a lot of untouched potential. Cost of developing custom machine learning solutions that solve unique business problems is a major inhibitor to far-reaching adoption of machine learning technologies. We recognize that the monolithic nature prevalent in today's machine learning applications stands in the way of efficient and cost effective customized machine learning solution development. In this work we explore the benefits of modular machine learning solutions and discuss how modular machine learning solutions can overcome some of the major solution engineering limitations of monolithic machine learning solutions. We analyze the trade-offs between modular and monolithic machine learning solutions through three deep learning problems; one text based and the two image based. Our experimental results show that modular machine learning solutions have a promising potential to reap the solution engineering advantages of modularity while gaining performance and data advantages in a way the monolithic machine learning solutions do not permit.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.