Proactive and Reactive Engagement of Artificial Intelligence Methods for Education: A Review

Auteurs : Sruti Mallik, Ahana Gangopadhyay

Résumé : Quality education, one of the seventeen sustainable development goals (SDGs) identified by the United Nations General Assembly, stands to benefit enormously from the adoption of artificial intelligence (AI) driven tools and technologies. The concurrent boom of necessary infrastructure, digitized data and general social awareness has propelled massive research and development efforts in the artificial intelligence for education (AIEd) sector. In this review article, we investigate how artificial intelligence, machine learning and deep learning methods are being utilized to support students, educators and administrative staff. We do this through the lens of a novel categorization approach. We consider the involvement of AI-driven methods in the education process in its entirety - from students admissions, course scheduling etc. in the proactive planning phase to knowledge delivery, performance assessment etc. in the reactive execution phase. We outline and analyze the major research directions under proactive and reactive engagement of AI in education using a representative group of 194 original research articles published in the past two decades i.e., 2003 - 2022. We discuss the paradigm shifts in the solution approaches proposed, i.e., in the choice of data and algorithms used over this time. We further dive into how the COVID-19 pandemic challenged and reshaped the education landscape at the fag end of this time period. Finally, we pinpoint existing limitations in adopting artificial intelligence for education and reflect on the path forward.

Soumis à arXiv le 23 Jan. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.