MAKE: Product Retrieval with Vision-Language Pre-training in Taobao Search
Auteurs : Xiaoyang Zheng, Zilong Wang, Sen Li, Ke Xu, Tao Zhuang, Qingwen Liu, Xiaoyi Zeng
Résumé : Taobao Search consists of two phases: the retrieval phase and the ranking phase. Given a user query, the retrieval phase returns a subset of candidate products for the following ranking phase. Recently, the paradigm of pre-training and fine-tuning has shown its potential in incorporating visual clues into retrieval tasks. In this paper, we focus on solving the problem of text-to-multimodal retrieval in Taobao Search. We consider that users' attention on titles or images varies on products. Hence, we propose a novel Modal Adaptation module for cross-modal fusion, which helps assigns appropriate weights on texts and images across products. Furthermore, in e-commerce search, user queries tend to be brief and thus lead to significant semantic imbalance between user queries and product titles. Therefore, we design a separate text encoder and a Keyword Enhancement mechanism to enrich the query representations and improve text-to-multimodal matching. To this end, we present a novel vision-language (V+L) pre-training methods to exploit the multimodal information of (user query, product title, product image). Extensive experiments demonstrate that our retrieval-specific pre-training model (referred to as MAKE) outperforms existing V+L pre-training methods on the text-to-multimodal retrieval task. MAKE has been deployed online and brings major improvements on the retrieval system of Taobao Search.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.