A Categorical Archive of ChatGPT Failures
Auteurs : Ali Borji
Résumé : Large language models have been demonstrated to be valuable in different fields. ChatGPT, developed by OpenAI, has been trained using massive amounts of data and simulates human conversation by comprehending context and generating appropriate responses. It has garnered significant attention due to its ability to effectively answer a broad range of human inquiries, with fluent and comprehensive answers surpassing prior public chatbots in both security and usefulness. However, a comprehensive analysis of ChatGPT's failures is lacking, which is the focus of this study. Ten categories of failures, including reasoning, factual errors, math, coding, and bias, are presented and discussed. The risks, limitations, and societal implications of ChatGPT are also highlighted. The goal of this study is to assist researchers and developers in enhancing future language models and chatbots.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.