Feature-based SpMV Performance Analysis on Contemporary Devices
Auteurs : Panagiotis Mpakos, Dimitrios Galanopoulos, Petros Anastasiadis, Nikela Papadopoulou, Nectarios Koziris, Georgios Goumas
Résumé : The SpMV kernel is characterized by high performance variation per input matrix and computing platform. While GPUs were considered State-of-the-Art for SpMV, with the emergence of advanced multicore CPUs and low-power FPGA accelerators, we need to revisit its performance and energy efficiency. This paper provides a high-level SpMV performance analysis based on structural features of matrices related to common bottlenecks of memory-bandwidth intensity, low ILP, load imbalance and memory latency overheads. Towards this, we create a wide artificial matrix dataset that spans these features and study the performance of different storage formats in nine modern HPC platforms; five CPUs, three GPUs and an FPGA. After validating our proposed methodology using real-world matrices, we analyze our extensive experimental results and draw key insights on the competitiveness of different target architectures for SpMV and the impact of each feature/bottleneck on its performance.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.